then only one of the following statements is always true. Which one is it?

A) 0 %26lt;= P %26lt; a;

B) a %26lt;= P %26lt; a+b;

C) a+b %26lt;= P %26lt; a+b+c;

D) a+b+c %26lt;= P %26lt; 2(a+b+c);

Explain your answer...

If a,b,c are positive real numbers and P = (b^2+c^2)/(b+c) + (c^2+a^2)/(c+a) + (a^2+b^2)/(a+b) , ...?

P = (b²+c²)/(b+c) + (c²+a²)/(c+a) + (a²+b²)/(a+b)

= b+c - 2bc/(b+c) + c+a - 2ac/(c+a) + a+b - 2ab/(a+b)

= 2(a+b+c) - (2bc/(b+c) + 2ac/(a + c) + 2ab/(a + b))

2bc/(b + c) is the harmonic mean of b and c

The harmonic mean ≤ the arithmetic mean

The harmonic mean %26gt; 0 (a, b and c are all positive numbers)

2bc/(b+c) + 2ac/(a+c) + 2ab/(a+b) ≤ (b+c)/2 + (a+c)/2 + (a+b)/2

(The sum of three harmonic means must be less than or equal to the sum of the corresponding arithmetic means)

2bc/(b+c) + 2ac/(a+c) + 2ab/(a+b) ≤ 2(a+b+c)/2

2bc/(b+c) + 2ac/(a+c) + 2ab/(a+b) ≤ (a+b+c)

2bc/(b+c) + 2ac/(a+c) + 2ab/(a+b) %26gt; 0

(Each harmonic mean is greater than 0, so the sum must be greater than 0)

P %26lt; 2(a+b+c)

P ≥ 2(a+b+c) - (a+b+c)

P ≥ (a+b+c)

(a+b+c) ≤ P %26lt; 2(a+b+c)

D

Subscribe to:
Post Comments (Atom)

## No comments:

## Post a Comment